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Evaluating Coastal Landscape Response to Sea-level Rise 
in the Northeastern United States—Approach and 
Methods 

By Erika E. Lentz,1 Sawyer R. Stippa,1 E. Robert Thieler,1 Nathaniel G. Plant,1 Dean B. Gesch,1 and Radley M. 
Horton2 

Abstract 
The U.S. Geological Survey is examining effects of future sea-level rise on the coastal landscape 

from Maine to Virginia by producing spatially explicit, probabilistic predictions using sea-level 
projections, vertical land movement rates (due to isostacy), elevation data, and land-cover data. Sea-
level-rise scenarios used as model inputs are generated by using multiple sources of information, 
including Coupled Model Intercomparison Project Phase 5 models following representative 
concentration pathways 4.5 and 8.5 in the Intergovernmental Panel on Climate Change Fifth 
Assessment Report. A Bayesian network is used to develop a predictive coastal response model that 
integrates the sea-level, elevation, and land-cover data with assigned probabilities that account for 
interactions with coastal geomorphology as well as the corresponding ecological and societal systems it 
supports. The effects of sea-level rise are presented as (1) level of landscape submergence and (2) 
coastal response type characterized as either static (that is, inundation) or dynamic (that is, landform or 
landscape change). Results are produced at a spatial scale of 30 meters for four decades (the 2020s, 
2030s, 2050s, and 2080s). The probabilistic predictions can be applied to landscape management 
decisions based on sea-level-rise effects as well as on assessments of the prediction uncertainty and 
need for improved data or fundamental understanding. This report describes the methods used to 
produce predictions, including information on input datasets; the modeling approach; model outputs; 
data-quality-control procedures; and information on how to access the data and metadata online. 

Introduction 
Climate change effects, such as sea-level rise and changes in coastal storm intensities (Karl and 

others, 2009; Bender and others, 2010; Church and others, 2013; Hartmann and others, 2013), will 
likely result in increased effects on coastal regions (Field and others, 2012; Moser and others, 2014; 
Wong and others, 2014). In particular, the combined effects of climate-driven erosion and inundation 
may reduce habitat area and (or) quality along sandy and (or) wetland shorelines (Craft and others, 
2009; Kirwan and Megonigal, 2014) and make human infrastructure vulnerable (U.S. Army Corps of 
Engineers, 2013; Horton and others, 2014). These changes are expected to have a broad range of effects 
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on natural and built environments, from affecting the breeding, nesting, and feeding behavior of 
threatened shorebird species such as the piping plover (Seavey and others, 2011; Gieder and others, 
2014) to driving investment decisions related to the protection or abandonment of structures 
(McNamara and Keeler, 2013). 

Assessments of future effects of sea-level rise on coastal regions vary depending on the 
responses that the assessments are trying to predict. The simplest assessments produce inundation 
scenario maps that show the flooding of existing topography to set increments of elevated sea level 
(Gesch, 2009; Marcy and others, 2011; Weiss and others, 2011). This type of assessment is 
straightforward and useful for understanding which areas are potentially vulnerable to flooding. 
However, coastal processes across short and long timescales (for example, storms, water-level extremes, 
changes to sediment flux) and other factors that drive evolution of the coast are expected to occur as sea 
level rises (Fitzgerald and others, 2008; Gutierrez and others, 2009), and as neither land elevation nor 
land-cover changes are considered, such assessments do not address the possibility of dynamic 
response. Spatially explicit forecasts of the interactions of oceanographic, geomorphic, and ecological 
processes have produced more detailed coastal evolution and vulnerability assessments in response to 
sea-level rise, storms, and other climate factors. However, these forecasts are accompanied by 
substantial and spatially variable uncertainty resulting from errors in initial elevations, limitations in 
understanding of the relevant processes, and uncertainty in the climate-change drivers such as sea-level-
rise rates (Thieler and Hammar-Klose, 1999; Craft and others, 2009; Arkema and others, 2013), and the 
integration of these uncertainties with decision making related to climate change is not straightforward. 

This report describes methods used to build, test, and run a sea-level-rise decision-support model 
that considers two coastal response types—one that is driven by inundation and one that also considers 
dynamic evolution of the coastal landscape. The model represents a conceptual framework aimed at 
supporting sound adaptive management and resource allocation strategies for the northeastern United 
States. The application of a structured decision-making process at the outset of this research has helped 
ensure that the results provided by this analysis directly address decision-making needs and are readily 
compatible with parallel habitat-modeling efforts. Through this modeling approach we are able to apply 
prediction uncertainty to identify areas where confidence levels are sufficiently high to inform decision 
making, and those where low confidence levels indicate improvements in data or information are 
needed to ensure predictions are accurate. The effects of regional sea-level-rise on the coast are 
predicted for four decades (the 2020s, 2030s, 2050s, and 2080s) at resolutions commensurate with those 
of other decision-support applications. In addition to describing the approach and the model, this report 
describes the input datasets and data-validation procedures, and it includes information on how to access 
the predictions and metadata online. 

Decision-Support Requirements 
The purpose of this model is to develop a geospatially explicit understanding of the probability 

of coastal landscape change and land loss in response to sea-level rise. This information will directly 
address decision-support needs elicited through a collaborative effort with the North Atlantic Landscape 
Conservation Cooperative (NALCC) through a structured decision-making process (Bashari and others, 
2009; Ogden and Innes, 2009; Calkin and others, 2011; Martin and others, 2011; Runge and others, 
2011; Marcot and others, 2012) involving regional resource managers and researchers. By requiring 
clear articulation of every stage of the problem to be solved, the application of a structured decision-
making framework at the outset of a research project helps to ensure that the result generated will 
provide information necessary to tackle the problem identified rather than a result related to but not 
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ultimately as useful to the decision-making process as another outcome might be. The coastal response 
information we provide will be used to inform corresponding habitat models as well as to map out 
alternative management strategies to optimize conservation efforts and allocate resources for the 
NALCC region. As such, our study area encompasses the entire NALCC region, which extends from 
Maine to Virginia (fig. 1). 

Several datasets are central for ensuring that our coastal response predictions meet decision-
making needs. Sea-level projections are produced for time periods that either match those being used by 
collaborators or are common planning horizons for decision makers; vertical land movement rates, 
which vary throughout the region because of isostasy and other factors, are incorporated to make 
relative sea-level scenarios. The use of high-quality elevation data allows the projection of water-level 
increases across the landscape to define a general level of submergence. The land-cover base map from 
a corresponding habitat effects model is used to ensure that results are produced at a resolution and 
coverage readily usable by collaborators; land-cover information from this map is coupled with 
landscape submergence information to identify environment types likely to dynamically respond rather 
than submerge. The objectives of this assessment, therefore, are to use these datasets (land cover, 
relative sea-level rise, elevation), as inputs to region-wide predictions of the likelihood that a 30-meter 
(m) area will persist, be altered, or become submerged in the future. 

Characterizations of Sea-Level Rise Effects on the Coast 
We geospatially resolve the alteration and adaptability of coastal land-cover types to a range of 

sea-level-rise scenarios. Adjusted elevation serves as a primary variable that can be used to describe the 
landscape with respect to the projected sea levels. The adjusted elevation (AE) transforms the current 
[2010s] elevation (E), expected sea-level (SL), and expected geologically or tectonically controlled 
vertical land movement (VLM), as follows: 

 ( ) ( ) ( ) ( ), , ,AE x t E x SL x t VLM x t uncertainties= − + +
    , (1) 

where 
 x  indicates dependence on the geospatial location (that is, x  = latitude and longitude) 

and 
 t indicates dependence on time. 
Here, the spatial and temporal variability in sea level is presented as projected sea-level scenarios for the 
2020s, 2030s, 2050s, or 2080s obtained from models, and variability in vertical land movement is 
presented as the calculated amount of elevation change caused by subsidence and (or) glacial isostatic 
adjustment based on current rates extrapolated to the times of interest. Uncertainties apply to each of the 
variables on the right side of equation 1. 

In addition to adjusted elevation, the coastal response of the landscape is considered by 
identifying the likelihood that a coastal area will respond or submerge in response to sea-level scenarios. 
This prediction is made by combining adjusted elevation predictions with land-cover information 
(fig. 2). The possibilities for coastal response of the land include morphologic and ecological evolution 
(dynamic response) or inundation (static response) as water levels increase for six general land-cover 
types (table 1). There are two forms of dynamic response: one is when the initial land cover type is 
maintained; the other is when there is a transition to another nonsubmerged land cover type. Static 
response, on the other hand, occurs in areas that cannot accommodate or adapt to water-level increases 
and, therefore, become submerged or inundated. 
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Table 1. The land-cover classes falling within the six generalized land-cover categories used in this study. 
[Each category assumes a similar response rate of the land-cover classes to sea-level-rise effects] 

 Land cover category Land-cover classes included 
Subaqueous Bays, lakes, rivers, marine and estuarine subtidal, and deepwater  
Marsh Salt and freshwater marshes, bogs, swamps, fens, wetland forests, intertidal aquatic beds and reefs 
Beach Dune and swale/sandy beach (including bluffs), marine and estuarine intertidal unconsolidated shore  
Rocky Rocky outcrops and shores, marine and estuarine intertidal rock bottom 
Forest Forests, woodlands, grasslands, agricultural, shrublands 
Developed All National Land Cover Dataset developed classes (open space, low, medium, and high density), roads, active and 

abandoned railroad tracks 
Coastal response predictions include prediction probabilities specific to different land cover 

types (table 1); including prediction probabilities allows us to address the varying degrees of complexity 
and understanding regarding the effects of sea-level rise across the landscape. The coastal response is 
determined by coupling adjusted elevation predictions with estimated probabilities of land-cover-type 
adaptation for each of 30 adjusted elevation and land cover scenarios (table 2). The probability of a 
dynamic response to adjusted elevation was specified for each combination of five discretized adjusted 
elevation levels (-12 to < -1, -1 to < 0, 0 to 1, >1 to 5, and > 5 to 10 m) and six land-cover categories 
(table 1). The probability of an inundation response is the dynamic response probability subtracted from 
1. The resulting transition boundary table (table 2) shows these probabilities. A higher level of 
confidence for one outcome over the other is expressed by assigning a higher likelihood percentage to 
the former; where uncertainty in the two outcomes was greatest, each response type was given an equal 
likelihood of occurrence. The following sections describe in detail our modeling approach and how 
likelihoods were estimated for each coastal response scenario. 

Table 2. Likelihood estimates of response for each adjusted elevation range and corresponding land-cover type. 
[References are those associated with sea-level threshold rates used to inform probabilities] 

Land cover type 
Coastal reponse by adjusted elevation, in meters1 

References 
-12 to -1  -1 to 0  0 to 1  1 to 5  5 to 10 

Subaqueous 0.90 | 0.10 0.70 | 0.30 0.50 | 0.50 0.10 | 0.90 x | x Niederoda and others (1984); Swift and others (1985); Wright 
and others (1991, 1994); Orth and others (2006) 

Rocky 0.05 | 0.95 0.10 | 0.90 0.50 | 0.50 0.90 | 0.10 x | x Thieler and Hammar-Klose (1999) 
 

Marsh 0.25 | 0.75 0.45 | 0.55 0.65 | 0.35 0.90 | 0.10 x | x Morris and others (2002); Kirwan and others (2007); Cahoon 
and others (2009); Kirwan and others (2010); and Kirwan 
and Megonigal (2013) 

Beach 0.40 | 0.60 0.85 | 0.15 0.95 | 0.05 1.00 | 0.00 1.00 | 0.00 Fitzgerald and others (2008); Cahoon and others (2009); 
Gutierrez and others (2009) 

Forest 0.10 | 0.90 0.45 | 0.55 0.50 | 0.50 0.75 | 0.25 x | x Clark (1986); Brinson and others (1995); Robichaud and 
Begin (1997); Williams and others (1999) 

Developed 0.05 | 0.95 0.25 | 0.75 0.50 | 0.50 0.75 | 0.25 x | x McNamara and Werner (2008); McNamara and others (2011); 
McNamara and Keeler (2013) 

1Response is shown as dynamic | static by land cover type and adjusted elevation range. x denotes the elevation range was not included for 
the specified land cover type. 

Modeling Approach 
Bayesian networks generate robust probabilistic predictions. Assigning a probability of 

occurrence to a predicted outcome makes uncertainty easier for the user to assess. A number of coastal 
Bayesian network applications have been demonstrated to date, including wave predictions (Plant and 
Holland, 2011), sea-cliff erosion (Hapke and Plant, 2011), long-term shoreline change (Gutierrez and 
others, 2011), dune erosion (Plant and Stockdon, 2012), groundwater response to sea-level rise (Fienen 
and others, 2013; Masterson and others, 2013), and overwash response (Plant and others, 2014). The 
conceptual model is used to guide the Bayesian network design (fig. 2) that takes the E, SL, VLM, and 
LC input and predicts AE and CR. 
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We use the following equations based on Bayes’ theorem (Bayes, 1763) to resolve the two 
probabilistic outputs: 

 P (AEi|[E, SL, VLM]j) = P([E, SL, VLM]j|AEi) × P(AEi) / P([E, SL, VLM]j) (2A) 

 P (CRi|[LC, AE]j) = P([LC, AE]j |CRi) × P(CRi) / P([LC, AE]j) (2B) 

The left side of the equation is the likelihood (posterior probability) of a particular coastal response, 
either AE or CR given a particular set of inputs. The inputs and outputs are allowed to take on a finite 
number of discrete states (fig. 3; table 3), and equation 2 evaluates the likelihood of the ith output state 
(and does so for all possibilities) given inputs extracted from the jth spatial location. The particular 
response might include the joint occurrence of a specific sea-level projection and a specific adjusted 
elevation range or prediction of coastal response type. The first term on the right side of the equations—
for example, P([LC, AE]j |CRi)—is the likelihood of the observation if the response (in this case, CR) is 
known. That is, it is the probability of a particular adjusted elevation range or coastal response type 
integrated over all scenarios. The next term—for example, P(CRi)—is the prior probability, or what is 
known about the parameter before new or additional information is available, including uncertainty. The 
denominator is a normalization factor to account for the likelihood of the observations. 

Table 3. Discretized bin ranges for all parameters in the Bayesian network. 
 Model Parameter Discretized Bin Ranges 

Projected sea-level (meters) 0 to 0.25; > 0.25 to 0.5; > 0.5 to 0.75; > 0.75 to 2 
Vertical land movement (meters) -0.3 to < 0; 0 to 0.1; > 0.1 to 0.3 
Elevation (meters) -10 to < -1; -1 to < 0; 0 to 1; > 1 to 5; > 5 to 10 
Land cover1 Subaqueous; marsh; beach; rocky; forest; developed 
Adjusted elevation (meters) -12 to < -1; -1 to < 0; 0 to 1; > 1 to 5; > 5 to 10 
Coastal response type Dynamic; static 
1Detail on the land classes that fall into these general land-cover categories can be found in table 1. 

The Bayesian network was constructed and trained by using Netica software (Norsys Software 
Corp., version 5.12, 1992–2013, http://www.netica.com/). Nodes in the Bayesian network (fig. 3) show 
input parameters (left) and forecasts (right); probability distributions in each box show the prior 
probability, or the probability of data falling within one of the specified ranges (discrete bins, table 3) 
given the full distribution of the regional data. Because sea level and vertical land movement bin ranges 
are time-step dependent, prior probabilities for these two inputs show uniform distributions; because our 
approach is scenario based, setting the prior probabilities in this way allows an equally likely chance of 
any of these projections occurring if a time step is not specified. Correlations among nodes are 
represented by arrows between them. Because we are forecasting a future state for which observations 
do not exist, three different methods to train the BN are applied on the basis of the following: (1) a 
mathematically defined relation of the input variables with one another (equation 1), used to compute 
adjusted elevation predictions; (2) the relation between elevation and land cover as based on data-input 
locations; and (3) probability assignments to inform CR predictions. More information on these training 
methods is described in the following section and in the section entitled Land Cover. 

Assigning coastal response type probabilities.—Coastal response probabilities (table 2) are 
assigned based on sea-level-rise induced change thresholds specific to land cover categories and used to 
train the Bayesian network on the relationship between land cover and adjusted elevation. For each time 
step, the sea-level projections included in our model increase, a point that becomes important when sea-
level rates in the published literature are compared with the adjusted elevation outcomes presented in 
the discussion that follows. Therefore, an inherent assumption in the estimates of response-type 
probability for the 30 scenarios is that larger time steps (2010s to 2050s or 2080s) correspond to the 
lowest adjusted elevation ranges (greatest levels of submergence), whereas the middle and highest 

http://www.netica.com/
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elevation ranges were more likely to correspond to smaller time increments (2010s to 2020s or 2030s). 
Published threshold values of relative sea-level rise for marshes, beaches, and to some degree forests 
were incorporated by converting sea-level-rise rates to sea levels, adding estimates of vertical land 
movement, comparing them with the adjusted elevation estimates (equation 1), and assigning a 
corresponding probability of dynamic response. For other land-cover categories, documentation of 
threshold rates can be sparse, and the physical response to sea-level rise in many cases is 
straightforward; therefore, we assigned probabilities to fill the knowledge gap following research that 
has demonstrated the use of expert opinion as a means of quantifying a parameter or substituting outputs 
from highly uncertain models (for example, Bamber and Aspinall, 2013). 

A number of studies have estimated threshold values for marsh adaptability to sea-level 
increases. Threshold sea-level-rise rates for the conversion of wetlands to subtidal environments have 
been modeled as a function of suspended-sediment concentrations and spring tidal ranges (Kirwan and 
others, 2010); predictions specific to geomorphic setting (throughout the mid-Atlantic coastal region) 
have included additional factors such as existing rates of relative sea level and wetland accretion, which 
were then evaluated for likelihood of open-water conversion at current [2010s] as well as increased sea-
level-rise rates (Cahoon and others, 2009). An ensemble of five wetland adaptation models identifies 
threshold sea-level-rise rates for marshes globally (Kirwan and others, 2010). Along the largely 
microtidal northeastern coast under midrange sediment concentrations, one of these models shows 
threshold sea-level rates in the 8- to 20-millimeter per year (mm/yr) range, which equates to a possible 
range of water-level increases of 0.4 to 0.8 m by 2050 and 0.7 to 1.4 m by 2080 (from 2010). Similarly, 
results from an expert panel convened as part of the U.S. Climate Change Science Program (CCSP) 
found that with an increase of 7 mm/yr in the sea-level-rise rate (which, when combined with the current 
[2010s] rate of 3 to 4 mm/yr, falls within the rate predicted by the ensemble models), approximately 
80 percent of marshes would be converted to open water (Cahoon and others, 2009). These values 
compare well with the likelihoods estimated for this scenario; under the lowest adjusted elevation bin (-
1 to -12 m), a 75-percent likelihood is estimated that the threshold condition would be reached (response 
would be static) and marshes would be converted to open water. An estimated 25-percent dynamic 
response reflects the uncertainty in this bin range, which leaves open the possibility that the variability 
of increases in sea-level rate, suspended-sediment concentrations, vertical accretion rate, and (or) tidal 
range in the area can combine in such a manner that in some instances marshes are in fact able to 
accommodate such water-level increases. 

Higher adjusted elevations predicted by our model showed a greater chance for dynamic 
response over that of a static response in marsh environments; this can be interpreted as an increasing 
confidence in marsh adaptability at lower sea-level-rise rates. Approximately two-thirds of the marsh 
ensemble models show threshold sea-level rates in the 2–8-mm/yr range (Kirwin and others, 2010), 
which equates to a maximum of 0.4 m by 2050 and 0.6 m by 2080. Similarly, the CCSP expert panel 
found a nearly 50-percent likelihood that at a 2-mm/yr increase in the sea-level-rise rate (which when 
combined with the existing rate of 3–4 mm/yr would correlate with the above listed ensemble model 
range), marshes in the mid-Atlantic region would be converted to open water (Cahoon and others, 
2009). To relate this finding to likelihood estimates in the coastal response model, we estimate a higher 
likelihood of marsh adaptability at lower elevation ranges (65 percent for adjusted elevation of 0 to 1 as 
opposed to 45 percent for adjusted elevation of -1 to 0 m), although these predictions reflect 
considerable uncertainty. Factors such as the rate of sea-level rise, the suspended-sediment 
concentration, and the vertical accretion rate, or some combination of these factors, will mean the 
difference between marsh survival and marsh conversion, but variability and uncertainty among these 
factors makes predicting the marsh response difficult. At the highest adjusted elevation ranges (1 to 
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5 m), it is very likely (90-percent probability of dynamic response) that a marsh in a given location 
would be able to adapt to water-level increases to remain a marsh; this agrees well with the CCSP expert 
panel results, in which experts estimated, at the current [2010s] sea-level-rise rate, an 11-percent 
likelihood of conversion to open-water conditions. 

Like marshes, beaches are expected to dynamically adapt to some sea-level increases, 
determined in large part by the frequency of storm events, availability of sediment, and rate of sea-level 
rise. Where coastal sediment resources are insufficient, barrier beaches will thin, leaving them more 
vulnerable to overwash, segmentation through breaching, and a consequent further loss of sediment 
through inlet and ebb tidal delta formation (Fitzgerald and others, 2008). Because of the limited 
information available on threshold values for beach conversion, particularly threshold values that are 
regionally consistent, we draw on results from a second expert panel of 13 coastal scientists that 
convened—as part of the CCSP—to identify threshold sea-level-rise rates for spits, headlands, and 
wave-dominated barrier islands for the mid-Atlantic coast (Gutierrez and others, 2009). CCSP panel 
findings were provided as the likelihoods of specific outcomes at the same sea-level-rise scenarios as 
used for marshes (the current [2010s] rate; the current rate +2 mm/yr; the current rate +7 mm/yr). At the 
highest rate (current +7 mm/yr, which as shown with marshes previously, corresponds most directly to 
our adjusted elevation bin of –1 to –12 m), the CCSP panel estimated that threshold conditions were 
likely (probability 68 percent) to be reached for spits and that it was very likely (probability 90 percent) 
that potential for threshold behavior would increase for wave-dominated barriers; this corresponds well 
with the estimated probability of about 60-percent probability (table 2) of static response for beaches, 
which suggests threshold exceedance is more likely than not but also reflects considerable uncertainty in 
the response. In all other scenarios, the CCSP panel was virtually certain (99 percent) that 
morphological changes caused by erosion, overwash, and inlet formation would be found on spits and 
wave-dominated barriers and that headlands would experience increased erosion; comparatively, we see 
an increasing likelihood of dynamic response estimated in the model (85 percent; 95 percent; and 
100 percent corresponding to bin elevation increases), suggesting the highest areas are the least likely to 
transition to another land class category and that lower areas are more likely to transition. Although our 
coastal response model is only based on the likelihood of vertical change per cell and does not include 
an element of landward translation, we see that translation as driven by these processes for beaches is 
implied in the increasing dynamic certainty observed in the predictions of coastal response type. 

Threshold values for the modeled land-cover conversion of the remaining types have not been 
explicitly estimated by the existing literature; therefore, the approach presented here demonstrates how a 
probabilistic model can be applied to constrain and parse prediction uncertainty. Forests are on the 
whole expected to have a slow adaptability response to sea-level increases; published literature 
documents that it is the coupling of sea-level increases with additional stressors such as episodic 
events—fire, wind from severe storms, land-use change—that damage the mature canopy (Clark, 1986; 
Brinson and others, 1995; Robichaud and Begin, 1997; Kirwin and others, 2007) and more gradual 
groundwater inundation that limits recruitment failure and drives forest erosion, flooding, or conversion 
into marsh (Robichaud and Begin, 1997; Williams and others, 1999; Kirwin and others, 2007). The 
probabilities estimated for the coastal response type incorporated in the model reflects this 
understanding and the accompanying uncertainty; end-member adjusted elevations show a strong 
likelihood (90 percent) of forest submergence (static response) in the range of -12 to -1 m, whereas there 
is a some likelihood or at least potential for forest adaptation (dynamic response) in the 1- to 5-m 
elevation range (75 percent). Middle-range adjusted elevations (-1 to 0 and 0 to 1 m) show response-
type predictions of near total uncertainty (about 50 percent) where unknowns, such as the sea-level-rise 
rate and location specific stressors, make more definitive predictions impossible at this elevation range. 
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The remaining land-cover categories have response types that are straightforward to forecast on 
the basis of the limited mobility of the substrates from which they are composed or of their built 
environments. Rocky categories by definition are composed of hard material and therefore unable to 
adapt to sea-level increases; we see near certain submergence predictions in the two lower elevation 
ranges, with near certain dynamic response (no submergence, therefore no change in land-cover class) 
in the elevation ranges above mean high water (MHW; table 1). Developed areas are by definition 
composed of 50- to 100-percent impermeable material (Fry and others, 2011) and, in addition to 
flooding from the shore, are vulnerable to groundwater inundation from rising water tables (Rotzoll and 
Fletcher, 2012). Further uncertainties include the likelihood, spatial extent, and frequency of human 
modifications, such as beach replenishment, which depend heavily on socioeconomic factors and the 
rate of coastal change in response to storms and sea-level rise in a given area (McNamara and others, 
2011). In elevations that fall below the adjusted mean sea level, our predictions are near certain of 
submergence or flooding (probability 95 and 75 percent). At elevations above the adjusted MHW (or 
adjusted elevation), uncertainty increases, reflecting the possibility that human modifications to 
vulnerable areas at very low elevations can prompt or permit adaptation or mitigation, depending upon 
the rate at which sea level rises. In the 0- to 1-m adjusted elevation range, a largely uncertain response is 
estimated (50 percent) because of an unknown human-response element, which is an important factor in 
these locales. The highest adjusted elevation level shows a moderate likelihood of dynamic response 
(75 percent). This estimate reflects the knowledge that at sufficient elevations, the area is not at risk of 
flooding, has the potential for human response and (or) coastal modifications that can be employed more 
effectively than at lower elevations, can adapt under a slower sea-level-rise scenario, or some 
combination thereof. 

The coastal response type estimates for the subaqueous category indicate the adaptability of the 
submerged environment type and (or) substrate to sea-level scenarios. In deepwater areas (-12 to -1 m), 
there is high confidence that water-level increases were likely to result in minimal overall change to the 
environment type or substrate (90-percent dynamic) (Wright and others, 1994). At moderate elevations, 
shallow subaqueous/subaerial environments are more likely to be sensitive to water-level increases 
caused by influences from waves, tides, sediment transport and resuspension, and sunlight attenuation 
(among other influences) than deeper environments (Niederoda and others, 1984; Swift and others, 
1985; Wright and others, 1991; Orth and others, 2006). Therefore a decreasing dynamic response 
likelihood (70 percent; 50 percent; and 10 percent) was estimated at elevations just below (-1 to 0 m), at 
(0 to 1 m), or slightly above (1 to 5 m) the adjusted MHW. These areas were read as increasingly unable 
to adapt and therefore estimated as likely to become submerged. 

Model Inputs 
The descriptions of the input datasets used in the Bayesian network explain both the source of 

the data and how they were treated to fit the Bayesian network model. This treatment includes assigning 
continuous variables to discrete bins (table 3) whose units are elevation measures in meters (E, SL, 
VLM, AE). Each of the variables includes an uncertainty estimate that reflects the uncertainties in 
measurement (E, VLM), analysis (SL, VLM, CR), and the propagation of these uncertainties (AE, CR). 

Sea-Level Projections 

Global sea-level projections generated by using representative concentration pathways (RCPs) 
scenarios for the 2014 International Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) 
are used as model inputs. Projections use RCP scenarios 4.5 and 8.5. Three components comprise sea-
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level projections: those related to oceans (both local ocean height and global thermal expansion); 
icemelt; and global land water storage. Of these components, local ocean height and global thermal 
expansion estimates are generated from 24 Coupled Model Intercomparison Project Phase 5 (CMIP5) 
models (Taylor and others, 2012), which provided simulations to AR5; local ocean heights are estimated 
by regridding global estimates to a 1- by 1-degree grid. Icemelt from the Greenland Ice Sheet and the 
two Antarctic Ice Sheets was estimated on the basis of the expert elicitation of Bamber and Aspinall 
(2013); the contributions of the glaciers and ice caps was estimated on the basis of Marzion and others 
(2012) and Radić and others (2013). For the ice-loss terms, no local fingerprints associated with 
gravitational, isostatic, and rotational effects resulting from ice-mass loss were included. Components of 
land water storage were incorporated into the model on the basis of Church and others (2013). For each 
of these three components of sea-level change, set percentiles (10th, 25th–75th, and 90th) of the 
distribution were estimated, and these percentiles were used to represent sea-level uncertainty. The sum 
of all components at each percentile is assumed to give the aggregate sea-level-rise projection. This 
method does not take into account potential correlation among components. For these reasons and 
others, these sea-level-rise projections should be thought of as scenarios, not fully probabilistic 
predictions. Decadal projections for the 2020s, 2030s, 2050s, and 2080s were generated by averaging 
across 10-year intervals and subtracting average values for 2000 to 2004. Time can be inferred from the 
sea-level bins in the Bayesian network; the extents of the four bin ranges correspond to the high (75th 
to 90th) water-level projections for a specific time step (figs. 3, 4; table 3). 

Vertical Land Movement Estimates 

Vertical land movement rates (caused largely by glacial subsidence and rebound) are 
incorporated with the sea-level projections by using vertical velocities measured from Global 
Positioning System (GPS) data (Sella and others, 2007) and estimated by using tide station records 
(Zervas and others, 2013), as shown in figure 5. Vertical motion was determined by using interpolated 
grids generated from a dataset of 362 continuously recording GPS devices throughout North America 
that were recently processed to account for glacial isostatic adjustment (GIA). Additional estimates 
generated by using a methodology that extracts oceanographic effects from relative sea-level rates to 
determine local vertical land movement rates from records of long-range tide stations were incorporated 
at 69 coastal locations (Zervas and others, 2013). Uncertainties provided for each dataset (specific to 
each station at 1 sigma) were averaged to provide an overall vertical land movement 1 sigma uncertainty 
estimate of 1.6 mm/yr. For integration with other inputs, vertical land movement rates were converted to 
meters; rates were multiplied by the time elapsed since 2010 to keep time increments decadal. Bin 
ranges correspond with moderate (0 to 0.1 m) and more extreme levels (-0.3 to < 0; > 0.1 to 0.3 m) of 
GIA as a product of the estimated rate and time. Measurement uncertainty for vertical land movement 
parameters is also reflected in bin divisions (fig. 3; table 3) in that bin boundary values are not more 
resolved than the estimated dataset uncertainty. 

Elevation 

Topographic data were acquired from the National Elevation Dataset (NED) (Gesch, 2007). 
Complete regional coverage is available at 1/3 arc-second (about 9-m cells), whereas partial coverage at 
higher resolution (1/9 arc-second; about 3-m cells) is also available. The 1/3-arc-second data come from 
a combination of topographic maps, aerial photos, and lidar, whereas the high-resolution data in the 1/9-
arc-second NED are from bare-earth lidar datasets (Gesch, 2007). Both are referenced to the North 
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American Vertical Datum of 1988. Lidar data in the NED were collected by a variety of Federal, State, 
and local partners between 2001 and 2011. 

Bathymetric data were obtained from the National Oceanic and Atmospheric Administration 
National Geophysical Data Center’s Coastal Relief Model (CRM). These data are available at a 3-arc-
second (about 90-meter) resolution and are produced by using hydrographic soundings data from the 
National Ocean Service and a number of academic institutions (National Oceanic and Atmospheric 
Administration, 2014). CRM data are used where NED data are unavailable for submerged areas such as 
bays, estuaries, and open ocean coasts. 

We used the highest resolution elevation data available to discern elevation changes along low-
lying coastal topography at increments small enough to correspond with 21st-century sea-level-rise rates 
between 2010 (our start date) and 2080. This means that the 1/9-arc-second data from the NED are used 
where available, supplemented by the 1/3-arc-second NED data where gaps in the 1/9 coverage exist, 
and CRM data are used where NED data are unavailable (fig. 6). Following Gesch (2009), uncertainties 
(root mean square error) for the 1/9- and 1/3-arc-second NED data are estimated at 0.42 m and 1.25 m. 
The topographic datasets were converted from the North American Vertical Datum of 1988 to MHW by 
using VDatum conversion grids at 6-arc-second resolution as supplied by VDatum (National Ocean 
Service, 2012). Vertical datum shifts to MHW were propagated landward through Euclidean allocation, 
which smooths vertical ledges at edges of VDatum zones. Coastal Relief Model (CRM) DEM data were 
not vertically referenced to MHW, as a significant portion of the CRM DEM (about 80 percent) 
remained within the same elevation range when applying MHW conversion (because the model uses 
elevation ranges instead of discrete values). Furthermore, CRM vertical datum conversion to MHW did 
not cover the full extent of the study area (about 9 percent loss) and an additional percentage (about 10 
percent) of the MHW conversion exceeded the vertical accuracy (± 1.0 m). Therefore the CRM remain 
primarily referenced to MLW with a vertical accuracy of ± 1.0 m (National Ocean Service, 2012). 

In addition to providing essential input information, the elevation data were used to define the 
extent of the coastal zone for the Bayesian network. Elevation data extend seaward to -10 m (referenced 
to mean low water), which generally corresponds to the base of the open Atlantic Ocean shoreface in the 
study area, along and across which the exchange of sediment between subaerial and subaqueous 
environments occurs (Swift and others, 1985; Wright and others, 1994). The landward extent of the data 
is generally bounded by the 5-m elevation contour (above MHW), though in some cases land elevations 
above 5 m have been included to provide continuous coverage of features with a high likelihood of 
dynamic response. Bluffs, dunes, and sand beach areas (or areas coded as “beach” as described in the 
land-cover section that follows) and within an elevation range of 5 to 10 m were therefore included in 
addition to the land areas at 5 m or below. Bin ranges (table 3) encompass these greater elevation 
ranges, where effects to the ecosystem and (or) geomorphology are less likely, and more moderate 
ranges (–1 to 0 and 0 to 1 m), where sea-level projections are likely to have greatest chance of 
exceeding sea-level thresholds for various environment types and therefore are important to classify for 
decision support. 

Land Cover 

Land-cover information was obtained from the Ecological Systems Map (ESM) Plus (ESMplus) 
dataset provided by the University of Massachusetts Landscape Conservation and Design (LCAD) 
model (http://www.umass.edu/landeco/research/dsl/dsl.html). ESMplus uses The Nature Conservancy 
(TNC) Northeast Terrestrial Wildlife Habitat Classification System of 2010 
(http://rcngrants.org/content/creation-regional-habitat-cover-maps-application-northeast-terrestrial-
habitat) as a base. Changes or additions to the TNC base map were incorporated from additional 

http://www.umass.edu/landeco/research/dsl/dsl.html
http://rcngrants.org/content/creation-regional-habitat-cover-maps-application-northeast-terrestrial-habitat
http://rcngrants.org/content/creation-regional-habitat-cover-maps-application-northeast-terrestrial-habitat
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datasets and information deemed important to the LCAD model. LCAD documents the following 
changes made to ESM to generate ESMplus: 

• Road and train track misalignment issues were corrected (source: Open Street Map roads, at 
http://www.openstreetmap.org/#map=5/51.509/-7.778); 

• Estuarine and marine classes were used to replace ESM estuarine classes (source: National 
Wetlands Inventory, 2013, at http://www.fws.gov/Wetlands/NWI/index.html); 

• Five development and two agricultural classes were used to replace ESM single-developed and 
agriculture classes by replacing those cells in the ESM (source: National Land Cover Dataset, 
2011, at http://www.mrlc.gov/nlcd2011.php);  

• High-resolution streams and road-stream crossings were empirically derived (sources: National 
Hydrography Dataset (NHD) at http://nhd.usgs.gov/; high-resolution vector streams; Open Street 
Map vector roads data at http://www.openstreetmap.org/#map=5/51.509/-7.778); and 

• Dam data originated from TNC's Northeast Aquatic Connectivity project and included data 
compiled from the U.S. Army Corps of Engineers National Inventory of Dams 
(http://geo.usace.army.mil/pgis/f?p=397:12:) and individual States. These data were modified 
through alignment with the NHD 1:24,000 high-resolution streams by using a combination of 
the reach code, distance to stream, and visual inspection. 
Uncertainty is a known and unquantified element of the land-cover dataset. Error, for which 

more robust calculation is in progress (Jin and others, 2013), is present in some of the base maps, and 
the integration of additional datasets listed with the base layers to create ESMplus will compound this 
error. Because little information is available on the land-cover-classification error, we have not assigned 
an uncertainty value to the dataset at this time. This potentially limits our model because of 
misclassification of parts of the landscape that could affect prediction outcomes. Despite this limitation, 
we do not anticipate that land-cover uncertainty, when available, will grossly alter our predictions. The 
Bayesian network is designed in such a way that the important relationships among the input parameters 
are captured and should be preserved even with the addition of land-cover uncertainty. This is 
particularly true because of the generalization of the land-cover information for modeling purposes. As 
error calculations and analyses are completed for this dataset, an uncertainty value can easily be 
incorporated in the Bayesian network and predictions correspondingly updated. 

For integration with the Bayesian network model, land-cover classes from ESMplus were 
assigned to generalized land-cover categories. Of the 197 land-cover classes in ESMplus, land-cover 
categories with distinctive responses to sea-level-rise effects—morphologic, ecologic, or caused by 
human influence—were established to assess the likelihood of land loss. Each category therefore 
anticipates a similar response and rate of response to sea-level-rise effects among the land-cover classes 
within them. The six categories and general summaries of the land-cover types in them are provided in 
table 2; their distribution and a comparison of them with the original ESMplus categories is shown in 
figure 7. To ensure seamless integration with habitat models being concurrently developed, the land-
cover data at 30-meter resolution were converted to point values and used to extract values from sea-
level, vertical land movement, and elevation layers. The Bayesian network was trained on the 
relationship between land cover and elevation by using the colocated input information from both 
datasets at each point; the relationship established between these two inputs allows us to observe how 
elevation constrains the distribution of land-cover types throughout the region and to parse uncertainties 
in both adjusted elevation and coastal response according to land cover. 

http://www.openstreetmap.org/#map=5/51.509/-7.778
http://www.fws.gov/Wetlands/NWI/index.html
http://www.mrlc.gov/nlcd2011.php
http://nhd.usgs.gov/
http://www.openstreetmap.org/#map=5/51.509/-7.778
http://geo.usace.army.mil/pgis/f?p=397:12
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Model Predictions 
Similarly to input datasets, the predicted variables (AE and CR) were discretized into five finite 

elevation ranges (adjusted elevation) and two outcome scenarios (coastal response). An example of the 
predicted outputs is shown in figure 8. Additional detail on the data outputs, including processing steps 
to produce predictions and their geospatial displays, can be found in the metadata for this report (Lentz, 
2015; http://dx.doi.org/10.5066/F73J3B0B). 

Adjusted Elevation 

Predictions of adjusted elevations with respect to projected MHW levels were discretized into 
five possible ranges: –12 to <–1 m; –1 to <0 m; 0 to 1 m; >1 to 5 m; and >5 to 10 m. Bin ranges 
encapsulate both end members (submerged or at elevations that exceed sea level projections and remain 
dry) as well as moderate elevation ranges where a variety of sea-level-rise effects are more likely to be 
observed. Monte Carlo simulations are run by using the 60 unique scenarios determined by 
equation 1—because of discretization of the input data with four sea-level bins, three vertical land 
movement bins, and five elevation bins—which in turn train the Bayesian network to make region-wide 
forecasts of adjusted elevation in lieu of observational data. Because there are a finite number of unique 
scenarios, probabilities assigned by the Bayesian network inherently incorporate correlations among 
inputs, in that scenarios seen most frequently are predicted with greater confidence than are other, less 
common scenarios. This category has two outputs: the first shows the most probable elevation range for 
a given time step (adjusted elevation); the second shows the probability that an observation at that range 
will be observed. Adjusted elevation results (fig. 8B) show only the prediction that is most likely to 
occur (the bin that has the highest probability associated with it). Adjusted elevation probability rasters 
(fig. 8C) indicate the level of confidence in the adjusted elevation prediction; higher probabilities 
indicate greater certainty, whereas lower probabilities indicate greater uncertainty. Because these 
predictions are generated on the basis of data values and a fixed relationship among them (equation 1), 
uncertainty in adjusted elevation predictions is attributable to projected sea levels and data quality rather 
than limited knowledge or understanding of response. By identifying where data quality is limited, such 
information can be used by decision makers to determine where future data-acquisition efforts might be 
focused. Sea-level projections also reflect increasing uncertainty through time, which can be similarly 
used to establish planning horizons for decision support. 

Coastal Response Type Probability 

Predictions of coastal response type (equation 2B) are determined by coupling adjusted elevation 
predictions with estimated probabilities of land-cover-type survival for each of the 30 coastal response 
scenarios (table 1). The predictions include the underlying uncertainty associated with the coastal 
response expert knowledge (table 2), as well as the propagated uncertainty in the adjusted elevation. An 
example of a coastal response prediction result is shown in figure 8D. Dark colors show areas where the 
predicted coastal response has highest confidence; beige areas show areas where uncertainty is greatest. 
Unlike the adjusted elevation, uncertainty in this dataset can either be a result of data quality and sea-
level projections, or, as explained earlier, an indication of limited knowledge or understanding about the 
processes and (or) response of a certain land cover to sea-level rise. In addition to adjusted elevation, 
therefore, the uncertainty in these predictions can be used to highlight where knowledge of the physical 
process or response of a certain environment type may be limited and, consequently, where and in 
which environment types future efforts or research needs may be greatest. 



 13 

Application of Predictions to Decision Support 

As defined in the structured decision-making process, the optimization of resources and 
conservation efforts for the NALCC is a two-part decision problem requiring (1) the identification of 
possible locations of current [2010s] and future land area that provide important habitat or ecosystems 
services and (2) an understanding of how these areas may fare under a variety of sea-level rise 
scenarios. Adjusted elevation and coastal response predictions address the latter part of this problem by 
providing decision makers critical information in terms of the future adaptability and corresponding 
uncertainty of the landscape to such scenarios. Understanding not only where land is likely to submerge 
but also the likelihood that the landscape can cope with that change at the output resolution provided 
can help decision makers to identify areas of resiliency and areas that may provide for transition and 
(or) buffering from sea-level-rise effects on a variety of spatial scales. Areas of considerable response 
uncertainty can also help to guide decision-making efforts in determining where data-collection efforts 
and research to improve knowledge on processes and (or) response might be focused, or, alternatively, 
where limited resources might be better used elsewhere. Coupled with corresponding habitat and 
ecosystem modeling efforts, such information can be used to address the first part of this problem, 
identifying locations of important habitat or ecosystems services, to locate prime areas for conservation. 
With this information, decision makers can evaluate where land may need to be acquired or managed 
differently, now or in the future, to ensure sound implementation of efforts and resources throughout the 
region. 

Dataset Access and Assessment 
Three grids showing adjusted elevation ranges (fig. 8B), their associated probabilities (PAE; 

fig. 8C), and probability estimates of coastal response type (fig. 8D) have been produced in ArcGIS 
raster format for each of the four prediction decades (the 2020s, 2030s, 2050s, and 2080s). Adjusted 
elevation rasters display the most probable range as determined by the Bayesian network, and the 
corresponding probability raster shows the likelihood of observing that outcome. Coastal response 
rasters show the probability of dynamic response; because the forecast is binary, the corresponding 
static response can be determined as the dynamic response probability shown subtracted from 1. 
Probability of 0.5 percent indicates total uncertainty in the CR prediction, meaning a static or dynamic 
response is deemed equally likely. Results span the coastal zone from elevations 10 m inland to -10 m 
offshore at a 30-m resolution matching that of the land-cover dataset. 

Data Access 

Predictions of the coastal landscape response to sea-level rise are available as part of this report 
(Lentz, 2015; http://dx.doi.org/10.5066/F73J3B0B). The data are assembled by year and correspond to 
the northeastern region of the United States as delineated by U.S. Department of the Interior Landscape 
Conservation Cooperatives (fig. 1; http://lccnetwork.org/find-an-lcc ). The prediction data can also be 
accessed through the U.S. Geological Survey (USGS) Coastal Landscape Response to Sea-Level Rise 
Assessment project page (http://woodshole.er.usgs.gov/project-pages/coastal_response/). These 
predictions can be updated as new and improved input data become available for the region. 

http://lccnetwork.org/find-an-lcc
http://woodshole.er.usgs.gov/project-pages/coastal_response/
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Metadata 

Federal Geographic Data Committee-compliant metadata provided with each raster include 
detailed information on the model and probability predictions for use in interpreting the data contained 
within that file. The metadata, which vary by time step, include descriptions of the model (Bayesian 
network), the input data used, the time period over which the outputs were calculated, the spatial and 
temporal resolution of the outputs, and specific process steps and model parameters that would be 
necessary to recreate the results. Metadata also include any references, such as peer reviewed 
publications, reports, or Web sites that provide additional information on the data inputs, models and 
their parameterizations. 

Data Quality Control 

Quality-control checks are performed as part of model review, and errors are rectified before 
predictions are posted online. The following protocols are used to ensure data quality: 

• Model input data are accessed directly from collaborators and published literature online; 
• Data are extracted at the centroid of each land-cover cell from the highest resolution dataset 

available (where 1/9- and 1/3-arc-second elevation (NED) data are both available, 1/9-arc-
second data are selected; where NED and CRM data are available, NED data are used); 

• Data processing steps are documented and recorded; 
• Model predictions (outputs) are validated against locations where coastal response 

characterization is well understood as available and appropriate; 
• Output rasters (adjusted elevations, their probabilities, and coastal responses) are examined for 

outliers or other artifacts, and reviewed and interpreted by project scientists to verify that ranges, 
patterns, and trends are reasonable and data and metadata formats are error free; if errors or 
inconsistencies are found, the model runs and geospatial conversions are reviewed and corrected 
as necessary; and 

• The database manager reviews and verifies that metadata are complete and accurate and data 
format standards are met. 

Data are continually assessed as they are used in analysis by the USGS and others. If errors or 
inconsistencies are discovered, the online data are updated and changes documented in the metadata. 
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Figure 1. Map showing coastal extent of regional predictions from Maine to Virginia (yellow) within the boundary 
of the North Atlantic Landscape Conservation Cooperative (gray). North Atlantic Landscape Conservation 
Cooperative boundary is from U.S. Fish and Wildlife Service (2012). 
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Figure 2. Conceptual diagram showing the structure of the Bayesian network. Sea-level projections (SL) and 
vertical land movement (VLM) are driving forces (green boxes), elevation (E) and land cover (LC) are boundary 
conditions (red boxes), and adjusted elevation (AE) and coastal response type (CR) are the sea-level-rise response 
variables (blue boxes). The equation shown relates SL, VLM, and E to produce AE predictions, whereas AE 
predictions and LC (table 1) are related through expert knowledge (ref. table 2) to produce CR predictions. 
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Figure 3. Diagram showing Bayesian network configuration, including inputs (left) and outputs (right). Horizontal 
bars shown in the boxes represent prior distributions (probability of occurrence) for each parameter, with uniform 
distributions assigned to projected sea-level and vertical land motion parameters to provide an equal likelihood of 
occurrence among them until a time step is specified. Correlations among nodes are shown by the arrows between 
them. Probabilities may not add up to exactly 100 percent due to independent rounding. m, meters. 
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Figure 4. Projected sea-level rise in decadal averages; left side shows gridded (1- by 1-degree resolution) 
outputs in the four percentile ranges, and right side shows the number of grid cells in each percentile range within 
the study area. 
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Figure 5. Maps showing vertical land movement rates at A, Global Positioning System (GPS) and tide station 
point locations and B, as an interpolated surface across the North Atlantic Landscape Conservation Cooperative 
region from which model inputs were extracted at land-cover point locations. 



 24 

 
Figure 6. Map showing sources and coverage of land elevation data (topography and bathymetry) for the North 
Atlantic Landscape Conservation Cooperative region (orange and gray); supplemental bathymetric data to the -10-
m contour offshore are shown in blue. Data are from U.S. Geological Survey (2014) and National Oceanic and 
Atmospheric Administration National Geophysical Data Center (2014). 



 25 

 
Figure 7. Maps showing geospatial distribution of the land-cover data A, as shown in Ecological Systems Map 
(ESM) Plus (ESMplus) and B, as generalized to the six land-cover categories used in this study. ESMplus digital 
data from the Designing Sustainable Landscapes Project, University of Massachusetts (2014). 
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Figure 8. Example 2050 prediction results for Sandy Neck in Barnstable, Massachusetts, showing A, 
generalized land-cover information, B, adjusted elevation (AE) ranges with respect to mean high water, C, the 
prediction probability or likelihood of observing the AE prediction, and D, the likelihood that the coastal response is 
dynamic or static.
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